NuMachine and NuAlgebra

K. K. NAMBIAR
School of Computer and Systems Sciences
Jawaharlal Nehru University, New Delhi 110067, India

(Received June 1995)

Abstract—A NuMachine capable of computing any recursive function is defined as a labeled
graph with certain restrictions. A NuAlgebra that goes with the machine is also discussed with

examples.

Keywords—NuMachine; NuAlgebra; Recursive functions.

1. INTRODUCTION

A directed graph, here called NuMachine (also written as numachine), can be used as a model
of computation if the graph satisfies the properties given below.

1. All edges have one of the three labels a, b, or e. Two different edges can have the same label.

2. All nodes have labels 1,1’,1”,...,2,2,2"” ...,3,...,...,0, the last label being always zero.
No two different nodes can have the same label. Node 1 is called the initial node and node
0 is called the final node.

3. The outdegree of the node 0 is zero. The outdegree of every other node is either one or two.
If it is one, the outgoing edge is labeled as a, and if it is two, the outgoing edges are labelled
as b and e.

4. A set of nodes is designated as input nodes and a single node is designated as the output
node.

The basis for the definition of this graph is the abacus machine described in [1], where it is
shown that abacus machines are equivalent to Turing machines. Since numachine is nothing but a
formalized version of the abacus machine, defined in terms of a graph, it follows that numachines
are also equivalent to Turing Machines and can compute any recursive function.

Figures 1 and 2 are examples of numachines which can perform addition and multiplication
respectively. For the adding machine the input nodes are 1 and 2 and the output node is 2, and
for the multiplying machine the input nodes are 1 and 2 and the output node is 3.

a 2/

Fig. 1

2. NUMACHINE

The working of the machine can be easily understood if we imagine each node as a register
having a string of a’s stored in it. The machine always starts from node 1 and moves from node
to node depending on the outgoing edges of the node. If the outgoing edge has label a, then
the machine increments the length of the string at that node by one and goes along the edge a
to the next node. If the outgoing edges have the labels b and e, then the length of the string is
decremented by one and goes along the edge b to the next node. If the length of the string is
already zero and hence cannot be decremented, the machine simply moves along edge e to the
next node.

When a set of nodes have the same number for a label, ignoring primes, it means that the
strings in those nodes can be incremented or decremented only simultaneously. When the string
in one of the nodes in the set is incremented or decremented, all the other nodes in the set do so
automatically. The working of the multiplication machine in Example 2, given later, illustrates
this. If the machine ever reaches the node 0, then it just stays put there and the computation is
considered to be over.

3. NUALGEBRA

We use the adjacency matrix [2] of the numachine in our calculations in the NuAlgebra
(also written as nualgebra). The adjacency matrix operates on a state vector of the machine and
produces a new state vector, and this process continues until the operation is no longer possible.
The muliplication of matrices in nualgebra is totally different from the usual one in that at every
stage the move to the next state vector is decided by just one row, and that too the row affects
only the corresponding row of the state vector. The position of the nonzero elements in the row
decide which row of the adjacency matrix is to be used next. The multiplication always starts
off with the first row of the matrix. These facts can easily be inferred from the working of the
numachine.

The two examples below illustrates the transitions of the machines in Figures 1 and 2 for
addition and multiplication. We will use the notation [k] for the length of the string in node k.

Ezample 1:

In this example the numachine calculates 2 + 2 as 4. The initial state vector shows that
[1] = 2 and [2] = 2. The final state vector shows [2] = 4.

1 20
1 b e a? a a e e
2| a a2 | =a® a® @ a*
0 e e e e e
Ezxample 2:
Here the machine calculates 2 x 2 as 4. The initial state vector shows that [1] = 2 and

[2] = 2. The final state vector shows [3] = 4.

1 2 2 3 4 4 0

1 b e

2 b e

2/ a

3 a

4 a

4 | e b

0
a
a
a
a

/_ﬁ
oo oo 8,88,

a a a a a a a a a a e - Je

> a a a e e e e a a®> a? a?

> a a a e e e e a a®> a? a?
=e e a a a a*> a® d® d® a® a® a® a?
e e e aa a a> a a e e e | e

e e e aa a a> a a e e e - | e

e e e e e e e e e e e e - \e

4. CONCLUSION
The attempt here has been to show that computation of recursive functions can also be
viewed as matrix multiplication apart from pebble manipulation and string processing.
REFERENCES

1. G. Boolos and R. Jeffrey, Computability and Logic, Cambridge University Press, New York, NY, (1974).
2. N. Deo, Graph Theory with Applications to Engineering and Computer Science, Prentice Hall of India, New
Delhi, (1984).

