
GENERIC DEPENDENCIES AND DATABASE DESIGN

K. K. NAMBIAR AND VINOD KANNOTH

Abstract. The concept of functional dependencies in databases is general-
ized and called generic dependencies. Just as Karnaugh Map exhibits all the
functional dependencies in a relation, Entropy Map represents all the generic
dependencies. A generalized normal form useful in database design is defined.

Keywords—Generic dependency, Generalized normal form.

1. INTRODUCTION

The purpose of this paper is to introduce some mathematical concepts in the design
of databases that can be useful to a data administrator. An important tool intro-
duced is that of an entropy map, which gives a better measure of the dependencies
in a relation than the karnaugh map. The generalized normal form given here is
based on the values of the entropy function.

2. DEFINITIONS AND NOTATIONS

Some selected brief definitions are given below for two reasons. One is to make
the paper reasonably self-contained, and the other is to give the definitions that
are most suitable for our purposes.

Relation: A subset of a cartesian product D1 × D2 × . . . × Dn. A relation
can be visualized as a table. The notation we use for the relation is
{X1, X2, . . . Xn} or some times even X1X2 . . . Xn, each Xk representing
a column.

Tuples: Rows of the table.
Attributes: Columns of the table. We will use the names, attributes and

columns, interchangeably.
Sifting Function: The function with the cartesian product D1×D2×. . .×Dn as

the domain and {0, 1} as codomain, specifying the tuples of the relation with
the value 1. The notation we use for the sifting function is S(x1, x2, . . . xn).

Arity: The number of attributes in a relation.
ABC . . . K: A string ABC . . . K can mean any of three things: a boolean

term ABC . . . K, a relation consisting of attributes A, B,C, . . . K or a set
{A,B, C, . . . K}. The meaning is to be taken from the context.

Join: The relation obtained from a product of sifting functions. Our symbol
for the join operator is on, for example, AB on AC on AD for the join of the
relations AB, AC, and AD.

Date: June 12, 2000.
1



2 K. K. NAMBIAR AND VINOD KANNOTH

Boolean Projection: The table corresponding to a subset of the columns. Rep-
etition of tuples are ignored in a boolean projection. In the literature,
boolean projection is called, just projection.

Regular Projection: When the repetitions of tuples in a subset of columns are
not ignored, we get the regular projection. With each tuple is associated a
natural number, giving the number of repetitions of that tuple. If a tuple
does not occur in the projection, that tuple gets the value zero.

Possibility Function: The function which specifies the regular projection, with
the tuples as domain and natural numbers as codomain.

Hamming Weight: The total number of times the value 1 occurs in the sifting
function of a boolean projection. Our notation for hamming weight is
‖S(x1, x2, . . . xn)‖.

Real Weight: The sum of the values of the possibility function. Clearly, the
real weight of any regular projection is equal to the hamming weight of the
original relation.

Possibility Distribution: The function obtained by uniformly dividing the val-
ues of the possibility function by the hamming weight of the original rela-
tion. Our notation for the possibility distribution is P (x1, x2, . . . xn). Since
the values of the possibility disribution adds up to unity, it can be consid-
ered as a probability distribution.

Entropy: If the values of a possibility distribution P (y1, y2, . . . ym) are listed
as p1, p2, p3, . . . , then the entropy of the possibility function is defined as

H(Y1 + Y2 + . . . Ym) = −
∑

k

pk log pk,

where log is with respect to the base 2. Note that we have defined an
entropy for a possibility function and not for a probability distribution, to
make it clear that every partition of a number has an entropy associated
with it.

Lossless Decomposition: A set of boolean projections of a relation, whose join
gives the original relation.

Database: A set of relations.
Horn Function: A disjunctive boolean expression in which every term has all

literals complemented except for exactly one.
Key: A minimal set of columns which determines all the other columns in a

relation. Here, the meaning of the word, determines, is in the usual literary
sense, the strict meaning is given later.

Determinant: A minimal set of columns which determines another column.
Saturated Set: A maximal set of columns which cannot determine any other

column in the relation.
Boyce-Codd Normal Form: A relation is in Boyce-Codd Normal Form (BCNF),

if every determinant in it is a key. A database is in BCNF, if all the relations
in it are in BCNF.

Lattice: A class of subsets of a set, closed under intersection.
Partial Order: A class of subsets of a set, with no restrictions.
Inclusion-Exclusion Principle: The principle which allows us to write the prob-

ability of the event A or B or C in terms of the probability of simultaneous



GENERIC DEPENDENCIES AND DATABASE DESIGN 3

events:

Pr(A + B + C) = Pr(A) + Pr(B) + Pr(C)

− Pr(AB)− Pr(AC)− Pr(BC)

+ Pr(ABC)

More detailed definitions of some of the terms above and also the basic ideas of the
theory used in the following discussion can be seen in [1, 2, 3, 4].

3. FUNCTIONAL DEPENDENCIES

A set of attributes, say {X1, X2, X3}, is said to determine another attribute X4,
written as X1X2X3 → X4, if

‖S(x1, x2, x3)‖ = ‖S(x1, x2, x3, x4)‖.
In other words, {X1, X2, X3} determines X4, or X4 is functionally dependent on
{X1, X2, X3}, if {X1, X2, X3} is a superset of a determinant of X4. An important
factor that goes into the design of databases is the functional dependencies in the
data.

Example 1.
Consider as an illustration, the relation given in Figure 1, in which there are two

functional dependencies, AB → C and C → A. In the discussion that follows, take
A,B, C, . . . as the same as X1, X2, X3, . . . respectively, if necessary.

A B C
a0 b0 c0

a0 b1 c1

a1 b0 c2
a1 b1 c2

Figure 1
We will carry out the analysis in detail for this example, which should give some

idea about the various tools available for the design of databases.
It is known that a horn function can represent the dependencies in a relation, in

our case the function is
f = ABC + CA.

It turns out that the complement of this function has interesting properties. The
karnaugh map for f is as given in Figure 2, where the nonzero values have been
left unmarked.

0 0

0

A

B

C

Figure 2
As a sum of minterms,

f = ABC + ABC + ABC + ABC + ABC.



4 K. K. NAMBIAR AND VINOD KANNOTH

If we collect those literals which are complemented in each term, we get the following
class of sets

{ABC,AC, A, B, φ}.
It is easy to verify from the given horn function that each element of this class
is a saturated set [1, 2]. Since the class is closed under intersection, we can draw
a lattice corresponding to it. If we inspect the lattice from the bottom looking
for the appearance of new literals, and coalesce appropriate nodes, we arrive at
a collection of relations which are in BCNF. This whole process is shown in the
sequence of graphs given in Figure 3.

HHH•A
�

�
�
•B

���

•
φ

@
@

@

•
ABC

•AC

HHH•A
�

�
�
•B

��� @
@

@
•C

•A
•B

��� @
@

@
•C

���
•

BC

•AC

Figure 3

The BCNF decomposition is given by {AC, BC}. The join of these relations will
give the original relation in Figure 1 back.

Example 2.
As another example, consider the relation given in Figure 4, with dependencies

AD → C, BC → D, C → A, and D → B.

A B C D
a0 b0 c0 d0
a0 b1 c0 d1

a1 b0 c1 d0

a1 b1 c2 d2

Figure 4
The corresponding horn function is

f = ADC + BCD + CA + DB

and

f = ABC D + ABCD + ABCD + ABCD + ABC D + ABCD + ABCD

The karnaugh map is as given in Figure 5, where the nonzero values have been left
unmarked.

0 0 0

0 0 0

0 0 0

A

B

C

D

Figure 5



GENERIC DEPENDENCIES AND DATABASE DESIGN 5

The class of saturated sets is given by

{ABCD, AB,AC, BD, A,B, φ}.

The sequence of graphs which gives the BCNF is shown in Figure 6.

HHHH

����

����

HHHH����

HHHH

•
φ

•
A

•AC •
AB

•
ABCD

•
B

•DB

HHHH

����

����

HHHH����

HHHH•
A

•C
•
B

•D

����

HHHH

•
A

•C
•
B

•D

����

HHHH•AC

•
CD

•DB

Figure 6

The BCNF decomposition is {AC,CD,DB}. The join of these relations will
give the original relation in Figure 4 back.

4. GENERIC DEPENDENCIES

In a relation {X1, X2, . . . Xn}, a set of attributes, say {X1, X2, X3}, generate
another attribute X4, written as X1X2X3 7→ X4, if

P (x1, x2, . . . xn) =
P (x1, x2, x3, x4)P (x1, x2, x3, x5, . . . xn)

P (x1, x2, x3)
.

Generic dependencies are not to be confused with the multivalued dependencies,
extensively discussed in the literature. The definition of multivalued dependencies
is in terms of sifting functions, whereas, our definition is in terms of possibility
distributions.

Referring to Example 1, we note that the possibility distribution can be written
as

P (x1, x2, x3) =
P (x1, x3)P (x2, x3)

P (x3)
.

From this we conclude that C 7→ B.
Referring to Example 2, we note that the possibility distribution can be written

as

P (x1, x2, x3, x4) =
P (x1, x3, x4)P (x2, x3, x4)

P (x3, x4)
.

From this we conclude that CD 7→ B.
These examples should not give the impression that generic dependencies can

occur only when functional dependencies are present.

Example 3.
Consider the relation in Figure 7, to take a closer look at generic dependencies.

In this relation, there are no functional dependencies, in fact, the only dependencies
are A 7→ B, A 7→ C, A 7→ D.



6 K. K. NAMBIAR AND VINOD KANNOTH

A B C D
a0 b0 c0 d0
a0 b0 c0 d1
a0 b0 c1 d0

a0 b0 c1 d1

a0 b1 c0 d0

a0 b1 c0 d1
a0 b1 c1 d0

a0 b1 c1 d1
a1 b1 c1 d1

Figure 7

The entropies of real projections of the relation are as follows.

H(X1) = log 9− 24
9

H(X2) = H(X3) = H(X4) = log 9− 8
9

H(X1 + X2) = H(X1 + X3) = H(X1 + X4) = log 9− 16
9

H(X2 + X3) = H(X2 + X4) = H(X3 + X4) = log 9− 6
9

H(X1 + X2 + X3) = H(X1 + X2 + X4) = H(X1 + X3 + X4) = log 9− 8
9

H(X2 + X3 + X4) = log 9− 2
9

H(X1 + X2 + X3 + X4) = log 9.

A slight variation of the inclusion-exclusion principle (IEP) allows us to write the
probabilities of simultaneous events in terms of other probabilities. For example,
we can write,

Pr(ABC) = Pr(A) + Pr(B) + Pr(C)

− Pr(A + B)− Pr(A + C)− Pr(B + C)

+ Pr(A + B + C).

A slight generalization of the IEP allows us to write the probability of the con-
ditional event BCD, when A is given as,

Pr(ABCD) = Pr(A + B) + Pr(A + C) + Pr(A + D)

− Pr(A + B + C)− Pr(A + B + D)− Pr(A + C + D)

+ Pr(A + B + C + D)

− Pr(A).

Making use of these identities, we can write the entropies of any minterm of the
boolean expression A + B + C + D. For example,



GENERIC DEPENDENCIES AND DATABASE DESIGN 7

H(ABCD) = H(A + B) + H(A + C) + H(A + D)

− H(A + B + C)−H(A + B + D)−H(A + C + D)

+ H(A + B + C + D)

− H(A)

= 3(log 9− 16
9

)

− 3(log 9− 8
9
)

+ log 9

− (log 9− 24
9

)

= 0

If we calculate the entropies of the rest of the minterms, we get the entropy map
as shown in Figure 8, where the nonzero entries have been left unmarked.

0

0 0

0

A

B

C

D

Figure 8
Corresponding to this entropy map we can write a boolean function

f = A(BC + BD + CD)

and claim that the function represents the generic dependencies in the relation. The
generic dependency A 7→ B, present in the relation is exhibited by the expression
AB(C + D) contained in the function. We can now generalize most of the notions
connected with the functional dependencies. One obvious fact is that a functional
dependency implies the corresponding generic dependency. The following defini-
tions pertain to generic dependencies.

Generant: A minimal set of columns which generates another column.
Generic Key: A minimal set of columns which generates all the other columns.
Generic Normal Form: A relation is in generic normal form (GNF), if all the

generants in it are generic keys. A database is in GNF, if all the relations
in it are in GNF.

Closed Set: A maximal set of columns which cannot generate any other col-
umn in the relation. The class of closed sets is not just a partial order, but
like the class of saturated sets, forms a lattice, as shown below.

To get the class of closed sets, keep all the functional dependencies in the rela-
tion, and consider the generic dependencies also as functional dependencies. The
saturated sets we get, will be closed sets. For our example, the closed sets are
{ABCD, BCD, BC, BD,CD,B, C, D, φ}. Considering the lattice corresponding
to this class of sets, we can proceed to decompose the relation into GNF as shown



8 K. K. NAMBIAR AND VINOD KANNOTH

in Figure 9. However, in our simple example, A is the only generant present in the
relation, and hence we can conclude that it is already in GNF.

HHHH

����

����

HHHH����

HHHH
HHHH

����

•
φ

•
B

•
BC

•BD

•

ABCD

•
D

•
CD

•C

•
BCD

HHHH

����

����

HHHH����

HHHH
HHHH

����•
B
• C •

D

•
A

Figure 9

•

•

A

BCD

ABCD
•

We have brought in entropies in our discussion only to arrive at the fact that
any generic dependency has a boolean function associated with it. For example,
as implied earlier, a generic dependency A 7→ B in a relation {A,B, C, D} can be
represented by the boolean function AB(C + D).

The analysis of the generic dependencies in our example would be as follows:
Given dependencies: A 7→ B, A 7→ C, A 7→ D.
Boolean function: AB(C + D) + AC(B + D) + AD(B + C)

= A(BC + BD + CD).
Closed set: {ABCD, BCD, BC, BD, CD,B,C, D, φ}.
Generalized normal form: The relation {A,B, C, D} is already in GNF.

Even though, this example is simple and contrived, it does illustrate that the generic
dependency is a generalized form of a functional dependency.

5. CONCLUSION

While the boolean expression ABC just tells us that AB determines C, the
value of the entropy H(ABC) gives us a much better measure of the uncertainty
of the attribute C when A and B are known. If fact, it will not be unreasonable
to say that any kind of relationship, whatsoever, between the attributes will get
reflected in the entropy map. Thus, it is not very surprising that we have been able
to carry out our analysis of generic dependencies using the entropy concept.

References

1. W. W. Armstrong, Dependency Structures of Database Relationships, Information Processing
74, North Holland, Amsterdam, (1974).

2. K. K. Nambiar, Some Analytic Tools for the Design of Relational Database Systems, Pro-
ceedings of the Sixth International Conference on Very Large Databases, Montreal, (1980).

3. K. K. Nambiar, et al, Boyce-Codd Normal Form Decomposition, Computers and Mathematics
with Applications 33, no. 4, 1–3, (1997).

4. C. J. Date, An Introduction to Database Systems, Narosa Publishing House, New Delhi,
(1995).

Formerly, Jawaharlal Nehru University, New Delhi, 110067, India
Current address: 1812 Rockybranch Pass, Marietta, Georgia, 30066-8015
E-mail address: nambiar@mediaone.net

Prosoft Technologies Inc., 45 Swift Street, South Burlington, Vermont, 05403
E-mail address: vinod.kannoth@prosoft-tech.com


