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Abstract. Ackermann functions are used recursively to define the transfinite
cardinals of Cantor. Continuum Hypothesis and Axiom of Choice are derived
from the definition. An axiom which splits the unit interval into infinitesimals
is stated. Using illustrations, the resulting set theory is visualized.
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1. INTRODUCTION AND PRELIMINARIES

The purpose of this paper is to give a visualization of the Intuitive Set Theory
(IST) described axiomatically in an earlier paper [1]. Some of the basic facts of set
theory, we want to state first, but to begin with, let us recognize that for the set
theorist, every natural number is a set, for example, the integer 5 is considered as
the set

{0, 1, 2, 3, 4}.
Adopting this notation, the entire set of natural numbers can be written as the sets

{} = 0

{0} = 1

{0, 1} = 2

{0, 1, 2} = 3

...

The advantage with this method is that we get an elegant way of defining ℵ0, the
first transfinite cardinal of Cantor, as

{0, 1, 2, 3, · · · },
and we will see later that we can define the higher cardinals also in this fashion.

An important characteristic of a set is its size or cardinality. Two sets are said
to have the same cardinality, if a one-to-one correspondence can be set up between
them. The set of all subsets of a set S is called the powerset of S. Cantor has shown
(diagonal procedure) that the powerset of S will always have greater cardinality
than the set S, even when S is an infinite set. An important consequence of this is
that we can without end construct bigger and bigger sets,

2ℵ0 , 22ℵ0 , 222ℵ0

, · · ·
and hence in set theory we cannot have a set which has the highest cardinality. A
disappointing consequence is that we cannot have a universal collection as part of
set theory and such a collection will always have to be outside the set theory. A
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significant set, as important as 2ℵα is the set of all subsets of ℵα of cardinality ℵα.
If we call this set

(ℵα
ℵα

)

, it can be shown, as done in the sequel that

(

ℵα

ℵα

)

= 2ℵα .

It is known in recursive function theory that the cardinality of infinite recursive
subsets of natural numbers is ℵ0. We will have occasion to use this fact later.

2. AXIOM OF MONOTONICITY

Consider the following question: If somebody, we will call the person P , travels
absolutely straight one meter per second indefinitely, where will P be eventually,
and how long will it be, before P reaches there. The obvious unsatisfactory answer
is that P will soon get out of sight and we will never know what happened to P
after that. This answer is very disturbing to a mathematician and therefore he
reformulates the question. In the modified form, P does not travel at uniform
velocity, instead, travels the first meter in half a second and from then on, every
meter takes only half the time of the previous meter. Now the question is, where will
P be in exactly one second. Even though Cantor did not formulate the problem in
this fashion, it is indirectly this question that Cantor faced, when he was developing
his set theory [2]. Withstanding considerable antagonism from his peers, Cantor
tells us that it would not be unreasonable to say that P has reached a distance
ℵ0 from the origin. To that, we can add with hindsight that the highest velocity
reached by P is

2{0,1,2,3,··· } = 2ℵ0 .

From the notation here, it should be clear that 2ℵ0 can also be considered as the
power set of ℵ0. Having whetted his appetite by the discovery of ℵ0 and 2ℵ0 , Cantor
increased the velocity of P even more than exponential, and went on to discover

ℵ1, 2ℵ1 , ℵ2, 2ℵ2 , · · ·

and finally asked the question: is 2ℵ0 = ℵ1?. By this time, the “heaven” reached by
Cantor by his travel through the infinities was so enticing for the mathematicians,
they raised the more general question: is 2ℵα = ℵα+1?. This question is considered
as one of the most important in mathematics today, IST answers the question in
the affirmative.

P ’s sojourn in Cantor’s heaven is what set theory is all about. Unfortunately, we
cannot talk about the distance or the speed with which P traveled in any natural
language, and hence what we do here is to give the travelogue as simply as possible
in terms of suggestive figures. These figures represent an infinite sequence of unit
intervals.

To understand the sequence of figures from Fig. Pa to Fig. Pω, we have to
talk about explosive operators, which is essentially the same as the well-known
Ackermann functions.
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Fig. P2. Set ω2

Fig. P1. Set ω1

Fig. P0. Set ω0

Fig. Pb. Set ω2

Fig. Pa. Set ω
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Fig. Pω. Set ℵ1
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...

Explosive Operators. For positive integers m and n, we define an infinite sequence
of operators as follows.

m⊗0 n = mn,

m⊗k 1 = m,

m⊗k n = m⊗h [m⊗h [· · · [m⊗h m]]],

where the number of m’s in the product is n and h = k − 1. It is easy to see that

m⊗1 n = mn,

m⊗2 n = mm..
.m

,

where the number of m’s tilting forward is n. We can continue to expand the
operators in this fashion further, straining our currently available notations, but
we will not do so, since it does not serve any purpose here. We have called ⊗k,
explosive operators for a good reason. Some idea about the complexity of ⊗k can
be obtained, if one attempts to calculate the number represented by 2 ⊗3 4. A
detailed evaluation shows that

2⊗3 4 = 22..
.2

,

the total number of 2’s tilting forward being 65536. We use these operators for
symbolizing the transfinite cardinals of Cantor [3].



4 K. K. NAMBIAR

We remove the restriction on m and n to be positive integers and claim that
these operators are meaningful even when m and n take transfinite cardinal values.
We go even further and assert that

ℵα+1 = ℵα ⊗ℵ0 ℵα.

The reasonableness of this equation can be judged from the fact that ℵ1 can be
written in the form

ℵ1 = {0, 1, 2, · · ·ω, · · ·ω2, · · ·ωω, · · · ωω, · · · , · · · , · · · }
= {0, 1, 2, · · ·ω, · · ·ω ⊗0 ω, · · ·ω ⊗1 ω, · · ·ω ⊗2 ω, · · ·ω ⊗3 ω, · · · , · · · , · · · }.

One more equation we will assert is that the powerset of ℵα,

2ℵα = 2⊗1 ℵα.

It is easy to explain the sojourn of P in terms of the operators ⊗k. In Fig. Pa are
marked, the elements of ω = ℵ0, the natural numbers. The first half of Fig. Pb

is obtained by contracting Fig. Pa to half its size, and the second half are marked
the elements of ω2 above ω. The first half of Fig. P0 is obtained by contracting
Fig. Pb to half its size, and the second half are marked the elements of ω2 above
ω2. By repeating this process indefinitely, we get the infinite sequence of figures,
finally ending up with Fig. Pω. The heavy line of Fig. Pω indicates that even the
smallest of intervals in it anywhere, contains an infinite number of ordinals.

Travel from 0 to ℵ0. Fig. Pa explains the travel of P from 0 to ℵ0. To prevent P
from going out of sight with exponential speed, we contract the space exponentially
every time P takes a step. The distance reached by P at every step is marked in
the figure. The distance ℵ0 appears at the end of the unit interval.

Travel from ℵ0 to ℵ1. To reach ℵ1, P travels the distance ℵ0 in half-a-second and
then steps through the significant ordinals ω, ω2, ω2, ωω, . . . increasing the speed
explosively at every step. To prevent P from going out of sight with explosive speed,
we contract the space implosively every time P takes a step. At the end of exactly
one second P reaches ℵ1, marked at the end of the unit interval in Fig. Pω.

Travel from ℵ0 to Ω. To reach Ω, the Absolute Infinity, P travels the distance ℵ0

in half-a-second and then steps through the higher cardinals ℵ1, ℵ2, ℵ3, . . .
increasing the speed explosively at every step. To prevent P from going out of
sight with explosive speed, we contract the space implosively every time P takes a
step. At the end of exactly one second P reaches Ω, which unfortunately is not a
cardinal, as shown by Cantor. In a sense, P loses identity and existence, on arrival
at Ω.

Cantor always wanted his Continuum Hypothesis, 2ℵ0 = ℵ1, to be true in his set
theory. We now introduce an axiom to accomplish this, and even more.
Axiom of Monotonicity. ℵα+1 = ℵα ⊗ℵ0 ℵα, and 2ℵα = 2 ⊗1 ℵα. Further, if
m1 ≤ m2, k1 ≤ k2, and n1 ≤ n2, then m1 ⊗k1 n1 ≤ m2 ⊗k2 n2.
Continuum Theorem. ℵα+1 = m⊗k ℵα for finite m > 1, k > 0.

Proof. A direct consequence of the axiom of monotonicity is that, for finite m > 1
and k > 0,

2ℵα = 2 ⊗1 ℵα ≤ m⊗k ℵα ≤ ℵα ⊗ℵ0 ℵα = ℵα+1.
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When we combine this with Cantor’s result

ℵα+1 ≤ 2ℵα ,

the theorem follows. �

Generalized Continuum Hypothesis (GCH). ℵα+1 = 2ℵα .

Proof. If we put m = 2, k = 1 in the Continuum Theorem, we get

ℵα+1 = 2 ⊗1 ℵα = 2ℵα ,

making GCH a theorem. �

Axiom of Choice (AC). Given any set S of mutually disjoint nonempty sets,
there is a set containing a single member from each element of S.

Proof. GCH implies AC, and we have already proved GCH. �

3. AXIOM OF FUSION

From the contracted pictures of P ’s travels all the way to Ω in the mathematical
universe, it is clear that the entire set of ordinals can be marked within a unit
interval. From this it follows that the interval [0, 1] can be used to represent all
the ordinals of Cantor. Now we want to mark the ordinals in [0, 1] rearranged
independent of P ’s travels. In the sequel, the terms points and elements are used
interchangeably.

Note, as an example, that the infinite sequence .010 ∗ ∗ ∗ ∗ · · · can be used
to represent the interval (.25, .375], if we accept certain assumptions about the
representation:

The initial binary string, .010 = .25, represents the initial point of
the interval.
The length of the binary string, 3 in our case, decides the length of
the interval as 2−3 = .125.
Every ∗ in the infinite ∗-string can be substituted by a 0 or 1, to
create 2ℵα points in the interval.

We will accept the fact that a nonterminating binary sequence, x = .bbbb · · · , or
equivalently, an infinite recursive subset of positive integers, can be used uniquely
to represent a real number in the interval (0, 1].

Consider as an example, the infinite binary sequence .101010 · · · ∗∗∗∗ · · · . Using
some freedom in terminology, we can say that this represents an infinitesimal of
length ℵ−1

0 located at 2
3 and the infinitesimal contains 2ℵα points in it. The length

of the infinitesimal is ℵ−1
0 because of the fact that the cardinality of R, the class of

infinite recursive subsets of positive integers is only ℵ0.
Since an infinite sequence is a precise form of specifying a number, which cannot

be improved any further, we can claim that the infinitesimals are sets from which
no element can be pried out. More precisely, we can say that, not even the axiom
of choice can choose an element from an infinitesimal. We will call a set from
which the axiom of choice cannot choose, a bonded set, and the elements in it
figments. The cardinality we get when we ignore figments and take a bonded set
as a single element, we will call virtual cardinality. The whole idea is made clear
by the following axiom [4].
Axiom of Fusion. (0, 1] =

(ℵα
ℵα

)

= R× 2ℵα , where x× 2ℵα is a bonded set.



6 K. K. NAMBIAR

The axiom of fusion says that (0, 1] is a class of bonded sets, called infinitesimals.
Further, the significant combinatorial part of the power set of ℵα consists of ℵ0

bonded sets, each of cardinality 2ℵα . Thus the virtual cardinality of
(ℵα
ℵα

)

is ℵ0.
We define Intuitive Set Theory as the theory we get when the axioms of mono-

tonicity and fusion are added to Zermelo-Fraenkel set theory (ZF).

Combinatorial Theorem.
(ℵα
ℵα

)

= 2ℵα .

Proof. A direct consequence of the axiom of fusion is that

2ℵα ≤
(

ℵα

ℵα

)

.

Since,
(ℵα
ℵα

)

is a subset of 2ℵα ,
(

ℵα

ℵα

)

≤ 2ℵα ,

and the theorem follows. �

Unification Theorem. All the three sequences

ℵ0, ℵ1, ℵ2, ℵ3, . . .
ℵ0, 2ℵ0 , 2ℵ1 , 2ℵ2 , . . .
ℵ0,

(ℵ0
ℵ0

)

,
(ℵ1
ℵ1

)

,
(ℵ2
ℵ2

)

, . . .

represent the same series of cardinals.

Proof. The axiom of monotonicity shows that the first two are the same, and the
axiom of fusion shows that the last two are same. �

Fig. 1 should help to build up a mental picture for an infinitesimal. We want
to imagine how an infinitesimal part of a unit interval looks like, when magnified
ℵ0 times. The heavy line in the figure is, perhaps, as good a representation as any
for an infinitesimal, and we can imagine that ℵ0 such infinitesimals constitute a
unit interval. The age-old question about a number on the real line is, whether we
should consider it as a tiny iron filing or as a steel ball. According to our view here,
it is both. The line (A,B) in the figure is the filing and B is the ball, with the
clear understanding that these are only figments of our imagination and can never
be palpable.

yA B

0.101010 . . .
Fig. 1

2
3

(2ℵα figments)

The binary sequence 0.101010 . . . shown in the figure indicates that the infini-
tesimal in our visualization corresponds to the number 2

3 in the unit interval.
If we accept the visualization of an infinitesimal, we can define an infinitesimal

graph, to represent the whole unit interval. In the Cantorian tradition, we define
the infinitesimal graph Gℵ0 as the infinite sequence of graphs shown as Figures
{G1, G3, G7, · · · }. Note that the graph Gk has k nodes between the nodes 0 and
ℵ0, labeled 1 to k. We will take it as axiomatic that the graph Gℵ0 shown in
Fig. Gℵ0 has ℵ0 nodes and ℵ0 edges, and also that each infinitesimal consists of an
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edge and a node. In the graphs, nodes are unconventionally drawn as vertical lines
for clarity, and also in deference to Dedekind whose cut it represents.
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Fig. G7

Fig. G3

Fig. G1
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Cantor’s theorem asserts that every model of Zermelo-Fraenkel set theory has to
have cardinality greater than ℵ0. On the other hand, Löwenheim-Skolem theorem
(LS) says that there is a model of ZF theory, whose cardinality is ℵ0. These two
statements together is called Skolem Paradox.

Intuitive set theory provides a reasonable way to resolve the Skolem Paradox.
We merely take the LS theorem as stating that the virtual cardinality of a model of
IST need not be greater than ℵ0. Clearly, the Upward Löwenheim-Skolem theorem
also cannot raise any paradox in IST.

In measure theory, it is known that there are sets which are not Lebesgue measur-
able, but it has not been possible to date to construct such a set, without invoking
the axiom of choice. The usual method is to choose exactly one element from each
of the set x × 2ℵα we defined earlier, and show that the set thus created is not
Lebesgue measurable. This method is obviously not possible in IST, since x× 2ℵα

is a bonded set. Thus, it would not be unreasonable to assert that there are no sets
in IST which are not Lebesgue measurable.

4. UNIVERSAL NUMBER SYSTEM

Without losing generality, we will restrict ourselves to binary number system.
A number is normally defined as a string · · · 000 ∗ ∗ ∗ · · · ∗ ∗ ∗ . ∗ ∗ ∗ · · · where the
string on the left side of the binary point, has to be all zeroes eventually and the ∗s
can take the values either 1 or 0. A slight extension of the 2s complement number
system, extensively used in computer science, allows us to conclude that a string
of the form · · · 111 ∗ ∗ ∗ · · · ∗ ∗ ∗ . ∗ ∗ ∗ · · · , where the left-string ends up in 1s finally,
can be used to represent negative numbers.
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We define universal number system (UNS) as the system we get, when we allow
infinite strings on both sides of the binary point, without any restriction. Given
a universal number a, the number we get when we flip the two-way infinite string
around the binary point, we will write as aF . Given, a universal number a, the
number we get by interchanging the 0s and 1s in it, we will write as −a. From our
definition, it should be clear that the binary number system is a special case of the
universal number system.

As mentioned earlier, every binary string of the form a = · · · 000. ∗ ∗ ∗ · · · rep-
resents a number in the interval [0, 1]. Some examples of as and the corresponding
aF s are given below.

a0 = · · · 000.000 · · · = 0 aF
0 = · · · 000.000 · · · = 0

a1 = · · · 001.000 · · · = 1 aF
1 = · · · 000.100 · · · = 1

2
a2 = · · · 010.000 · · · = 2 aF

2 = · · · 000.010 · · · = 1
4

a3 = · · · 011.000 · · · = 3 aF
3 = · · · 000.110 · · · = 3

4
a4 = · · · 100.000 · · · = 4 aF

4 = · · · 000.001 · · · = 1
8

a5 = · · · 101.000 · · · = 5 aF
5 = · · · 000.101 · · · = 5

8

The rationale behind the locations and names of the nodes in Fig. Gℵ0 should be
clear from the above values.

Consider the transcendental number π
4 in the interval [0, 1].

π
4

= · · · 000.11001000110 · · ·

and
(π

4

)F
= · · · 01100010011.000 · · ·

which gives the appearance of a number above all natural numbers. For this reason,
we will call it a supernatural number, of course, it is no more supernatural than
the transcendental number is transcendental. From this example, it should be clear
that corresponding to every transcendental number in the interval [0, 1], there is a
supernatural number.

Our discussion shows that the supernatural numbers can be used to represent
the entire set of transfinite ordinals. Just as an infinitesimal bonded set is attached
with a number in the interval (0, 1), an infinite unreachable stretch is attached with
every supernatural number. Here, the word “stretch” is used as an aid to visualize
an infinite set of points spread over an infinite line, but it is to be considered as an
element, just as a bonded set is.

5. CONCLUSION

If the two axioms introduced here, do not produce any contradictions in ZF
theory, IST produces a simple picture for visualizing all the ordinals of Cantor.
The two axioms split the interval [0, 1] into ℵ0 bonded sets, each set containing ℵα

figments. We consider the bonded sets as a single entity with figments in it, which
even the axiom of choice cannot access.
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