
Home Page

Title Page

Contents

JJ II

J I

Page 1 of 26

Go Back

Full Screen

Close

Quit

THE ESSENCE OF INTUITIVE SET THEORY

K. K. NAMBIAR

ABSTRACT. Intuitive set theory is defined as the theory we get
when we add the axioms, Monotonicity and Fusion, to ZF theory.
Axiom of Monotonicity makes the Continuum Hypothesis true,
and the Axiom of Fusion splits the unit interval into infinitesi-
mals.
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1. INTRODUCTION

The primary purpose of this paper is to give a clear definition of intu-
itive set theory (IST), so that researchers have all the necessary back-
ground to investigate the consistency of the two axioms that define IST
[1, 2, 4]. Gödel tells us that even though we are not in a position to
prove the consistency of a significant theory, we can prove its incon-
sistency, if it is inconsistent. The secondary purpose of this paper is
to explain IST to the novice who has a passing acquaintance with the
transfinite cardinals of Cantor.

http://www.ece.rutgers.edu/~knambiar/
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2. SEQUENCES AND SETS

We will accept the fact that every number in the open interval(0, 1)
can be representeduniquelyby an infinite nonterminating binary se-
quence.

For example, the infinite binary sequence

.10101010 · · ·

can be recognized as the representation for the number2/3 and

.10111111 · · ·

for the number3/4. This in turn implies that an infinite subset of
positive integers can be used to represent the numbers in the interval
(0, 1). Thus we have the set

{1, 3, 5, 7, · · · }+

also as a representation for2/3. A binary sequence that goes towards
the right as above, we will call aright-sequenceand the corresponding

http://www.ece.rutgers.edu/~knambiar/


Home Page

Title Page

Contents

JJ II

J I

Page 4 of 26

Go Back

Full Screen

Close

Quit

set aright-set, to make provision for aleft-sequenceand aleft-set. It
is easy to see that the left sequence

· · · 000010011.

and the corresponding left-set

−{4, 1, 0}

can be used to represent the number19. In general, any nonnegative
integer can be represented by a left-sequence, which eventually ends
up in 0s. Two’s complement number system allows us to use left-
sequences which eventually end up in1s to represent negative integers.
Thus, we have the left-sequence,

· · · 111100101.

and the left-set
−{· · · 8, 7, 6, 5, 2, 0}

http://www.ece.rutgers.edu/~knambiar/
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representing the negative number−27. Adding up all these facts, we
can claim that a two-way sequence can be used to represent any num-
ber on a real line. For example, the sequence,

· · · 000010011.10101010 · · ·

and the corresponding two-way set
−{4, 1, 0 : 1, 3, 5, 7 · · · }+

represent the number19.6666 · · · . Similarly, the complement of this
sequence,

· · · 111101100.01010101 · · ·
and the corresponding two-way set

−{· · · 8, 7, 6, 5, 3, 2 : 2, 4, 6, 8 · · · }+

represent the negative number−19.6666 · · · . Note the restriction in
our definition of a real number: the left sequence must eventually end
up in either1s or 0s. The number system we get when we put no

http://www.ece.rutgers.edu/~knambiar/
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restriction on both the left-sequence and the right-sequence, we will
call theuniversal number system(UNS). A universal number, whose
left sequence isnot eventually-periodic, we will call asupernatural
number. The connection between the transcendental and supernatural
numbers is explained next.

http://www.ece.rutgers.edu/~knambiar/
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3. UNIVERSAL NUMBER SYSTEM

We will first explain why we have excepted eventually-periodic left-
sequences from our definition of supernatural numbers. Consider the
left-sequence

· · · 101101101001001.

with a periodic parta = 101 = 5 of lengthlp = 3 and a nonperiodic
part b = 001001 = 9 of length ln = 6. We can write the sequence
formally as

b +
a2ln

1− 2lp

which when evaluated gives

−257
7

.

From this we infer that eventually-periodic left-sequences corresponds
to negative rational numbers. A similar argument shows that eventually-
periodic right-sequences represent positive rational numbers.

http://www.ece.rutgers.edu/~knambiar/
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We want to show that corresponding to every transcendental num-
ber there is a supernatural number. Given a universal numbera, the
number we get when we flip the two-way infinite string around the
binary point, we will write asaF . Consider the transcendental number

π

4
= · · · 000.11001000110 · · ·

and (π

4

)F
= · · · 01100010011.000 · · ·

which gives the appearance of a number above all natural numbers.
It is for this reason, we have called it a supernatural number, but of
course, it is no more supernatural than the transcendental number is
transcendental. From this example, we infer that corresponding to ev-
ery transcendental number in the interval(0, 1), there is a supernatural
number. More generally, we can say that every irrational number in
the interval(0, 1) has a corresponding supernatural number. By def-
inition, an infinite recursivesubset of positive integers, is an infinite

http://www.ece.rutgers.edu/~knambiar/


Home Page

Title Page

Contents

JJ II

J I

Page 9 of 26

Go Back

Full Screen

Close

Quit

right-set with a clear algorithm for its generation. The correspond-
ing number in the interval(0, 1) is called a computable number. It is
known from recursive function theory that the cardinality of the setR
of these computable numbers isℵ0. A number in the interval(0, 1),
which is not computable, we will call anillusivenumber. We will have
more to say about irrational computable numbers, but before that we
want to take a cursory look at the transfinite cardinals of Cantor.

http://www.ece.rutgers.edu/~knambiar/
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4. TRANSFINITE CARDINALS

Recall that every natural number can be represented by a set as
given below.

{} = 0,

{0} = 1,

{0, 1} = 2,

{0, 1, 2} = 3,

...

The advantage with this method is that we get an elegant way of defin-
ing the first transfinite cardinal of Cantor, as

ℵ0 = {0, 1, 2, 3, · · · }.

http://www.ece.rutgers.edu/~knambiar/
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The set of all subsets of a setS is called thepowersetof S, and written
as2S . Cantor has shown (diagonal procedure) that the powerset ofS
will always have greater cardinality than the setS, even whenS is an
infinite set. An important consequence of this is that we can without
end construct bigger and bigger sets,

2ℵ0 , 22ℵ0
, 222ℵ0

, · · ·

and hence in set theory we cannot have a set which has the highest
cardinality. A disappointing consequence is that we cannot have a
universal collection as part of set theory and such a collection will
always have to be outside the set theory. One-to-one correspondence
is the basis on which cardinality is decided, from which it follows that
ℵ0 can also be written as

{1, 2, 4, 8, · · · } = {20, 21, 22, 23, · · · }.

As Halmos points out [3], there is confusion in the literature regarding
the notation2ω, it has been used to represent the above set and also

http://www.ece.rutgers.edu/~knambiar/
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the set2ℵ0 , which in extenso, can be written as

2{0,1,2,3,···}.

To prevent this confusion, whenever necessary, we will write2ℵ0 as

{< 20, 21, 22, 23, · · · >}
to imply that2ℵ0 is a derived set from

{20, 21, 22, 23, · · · }.

http://www.ece.rutgers.edu/~knambiar/
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5. INFINITESIMALS

The study of the set of natural numbers gave us the notion ofℵ0.
The concept of a powerset makes it clear that there are higher cardinals
aboveℵ0. Then the question arises, whether there is some other way
of generating larger cardinals, other than taking powersets. Cantor has
shown that this is possible, and gives us the sequence of transfinite sets
of increasing cardinality as

ℵ0,ℵ1,ℵ2,ℵ3, · · · ,

with the understanding that there is no cardinal betweenℵα andℵα+1.
How exactly this sequence was generated, is an issue that we will take
up later, but for the moment we will accept this sequence.

Because of the one-to-one correspondence between the right-sets
and the left-sets, we will concentrate our attention on just the right-sets
and right-sequences. Note, as an example, that the infinite sequence
.110 ∗ ∗ ∗ ∗ · · · can be used to represent the interval(.75, .875), if we
accept certain assumptions about the representation:

http://www.ece.rutgers.edu/~knambiar/
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The initial binary string,.110 = .75, represents the
initial point of the interval.
The length of the binary string,3 in our case, decides
the length of the interval as2−3 = .125.
Every∗ in the infinite∗-string can be substituted by a
0 or 1, to create2ℵα points in the interval.

Now, consider the right-sequence

.10101010 · · · ∗ ∗ ∗ ∗ · · ·
and the corresponding right-set

{1, 3, 5, 7, · · · ℵ0, · · · ℵα}+.

If we can attach a meaning to this right-sequence, it can be only this:
it represents the number.6666 · · · with an infinitesimalattached to it,
the cardinality of the set of points inside the infinitesimal being2ℵα .

http://www.ece.rutgers.edu/~knambiar/
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6. AXIOM OF FUSION

The upshot of all our discussion so far is the following: The unit
interval (0, 1) is a set of infinitesimals with cardinalityℵ0, with each
infinitesimal representing a computable number. From the method we
used in the construction of the infinitesimal, it will not be unreason-
able, if we claim that the infinitesimal is an integral unit from which
none of its2ℵα elements can be removed. A set from which, the axiom
of choice (AC) cannot remove an element, we will call abonded set
and the elements in itfigments. If a set contains only bonded sets as
its elements, then we will call it aclass of bonded setsor justbonded
class. We will use the termvirtual cardinality to refer to the cardinal-
ity of a bonded class. The set of all subsets ofℵα of cardinalityℵα

we will symbolize as
(ℵα

ℵα

)
. Our saying so, will not, of course, make

anything a fact, so we introduce an axiom calledfusion.

Axiom of Fusion. (0, 1) =
(ℵα

ℵα

)
= R × 2ℵα , wherex × 2ℵα is a

bonded set.

http://www.ece.rutgers.edu/~knambiar/
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The axiom of fusion says that(0, 1) is a class of bonded sets, called
infinitesimals. Further, the cardinality of each infinitesimal is2ℵα , and
thevirtual cardinalityof (0, 1) is ℵ0.

Combinatorial Theorem.
(ℵα

ℵα

)
= 2ℵα .

Proof. A direct consequence of the axiom of fusion is that

2ℵα ≤
(
ℵα

ℵα

)
.

Since,
(ℵα

ℵα

)
is a subset of2ℵα ,(

ℵα

ℵα

)
≤ 2ℵα ,

and the theorem follows. �

http://www.ece.rutgers.edu/~knambiar/
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7. EXPLOSIVE OPERATORS

Halmos explains [3] the generation ofω1, the ordinal corresponding
to ℵ1 from ω as given below.

... In this way we get successivelyω, ω2,
ω3, ω4, · · · . An application of the axiom of substi-
tution yields something that follows them all in the
same sense in whichω follows the natural numbers;
that something isω2. After that the whole thing starts
over again:ω2 + 1, ω2 + 2, · · · , ω2 + ω, ω2 + ω + 1,
ω2 + ω + 2, · · · , ω2 + ω2, ω2 + ω2 + 1, · · · , ω2 +ω3,
· · · , ω2 + ω4, · · · , ω22, · · · , ω23, · · · , ω3, · · · , ω4,
· · · , ωω, · · · , ω(ωω), · · · , ω(ω(ωω)), · · · · · · . The next
one after all this isε0; then comeε0 + 1, ε0 + 2, · · · ,
ε0 + ω, · · · , ε0 + ω2, · · · , ε0 + ω2, · · · , ε0 + ωω, · · · ,
ε02, · · · , ε0ω, · · · , ε0ω

ω, · · · , ε20, · · · · · · · · · .

http://www.ece.rutgers.edu/~knambiar/
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We want to write the essence of this quotation as terse as possible, for
this purpose, we will first defineexplosive operators. For positive in-
tegersm andn, we define an infinite sequence of operators as follows.

m⊗0 n = mn,

m⊗k 1 = m,

m⊗k n = m⊗h [m⊗h [· · · [m⊗h m]]],

where the number ofm’s in the product isn andh = k − 1. It is easy
to see that

m⊗1 n = mn,

m⊗2 n = mm..
.m

,

where the number ofm’s tilting forward is n. We can continue to
expand the operators in this fashion further, straining our currently
available notations, but it is not relevant for us here. Note that these

http://www.ece.rutgers.edu/~knambiar/
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explosive operators are nothing but the well-known Ackermann func-
tions. We use these operators for symbolizing the transfinite cardinals
of Cantor.

http://www.ece.rutgers.edu/~knambiar/
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8. AXIOM OF MONOTONICITY

Stripped of all verbal explanations, we can write the generation of
ω1 as

< 0, 1, 2, · · ·ω, · · ·ω2, · · ·ωω, · · · ωω, · · · , · · · , · · · >

or in terms of the explosive operators as

< 0, 1, 2, · · ·ω, · · ·ω ⊗0 ω, · · ·ω ⊗1 ω, · · ·ω ⊗2 ω, · · · , · · · , · · · > .

Cantor has shown that the cardinality ofω ⊗k ω is ℵ0 for all finite
values ofk, and hence it is not that we have a sequence here of in-
creasing cardinality. Taking into account this fact, we assert that what
the sequence means is that

ℵ1 = {< 0, 1, 2, · · ·ω, · · ·ω ⊗0 ω, · · ·ω ⊗1 ω, · · ·ω ⊗2 ω, · · · >}

= ℵ0 ⊗{0,1,2,··· } ℵ0

= ℵ0 ⊗ℵ0 ℵ0.

http://www.ece.rutgers.edu/~knambiar/
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Once this is accepted, a natural extension is that

ℵα+1 = ℵα ⊗ℵ0 ℵα.

An inspection of the explosive operators shows thatm⊗k n is a mono-
tonically increasing function ofm, k, andn. Hence it will not be un-
reasonable to expectm ⊗k n to remain at least monotonically non-
decreasing, whenm, k, andn assume tranfinite cardinal values. Our
saying all this, will not make it a fact, for that reason we state an axiom
called axiom ofmonotonicity. Cantor always wanted his Continuum
Hypothesis,2ℵ0 = ℵ1, to be true in his set theory. We now introduce
an axiom that accomplishes this, and even more.

Axiom of Monotonicity. ℵα+1 = ℵα ⊗ℵ0 ℵα, and2ℵα = 2 ⊗1 ℵα.
Further, if m1 ≤ m2, k1 ≤ k2, and n1 ≤ n2, thenm1 ⊗k1 n1 ≤
m2 ⊗k2 n2.

Continuum Theorem. ℵα+1 = m⊗k ℵα for finitem > 1, k > 0.

http://www.ece.rutgers.edu/~knambiar/
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Proof. A direct consequence of the axiom of monotonicity is that, for
finite m > 1 andk > 0,

2ℵα = 2 ⊗1 ℵα ≤ m⊗k ℵα ≤ ℵα ⊗ℵ0 ℵα = ℵα+1.

When we combine this with Cantor’s result

ℵα+1 ≤ 2ℵα ,

the theorem follows. �

Generalized Continuum Hypothesis (GCH).ℵα+1 = 2ℵα .

Proof. If we putm = 2, k = 1 in the Continuum Theorem, we get

ℵα+1 = 2 ⊗1 ℵα = 2ℵα ,

making GCH a theorem. �

http://www.ece.rutgers.edu/~knambiar/
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Unification Theorem. All the three sequences

ℵ0, ℵ1, ℵ2, ℵ3, . . .
ℵ0, 2ℵ0 , 2ℵ1 , 2ℵ2 , . . .

ℵ0,
(ℵ0

ℵ0

)
,

(ℵ1

ℵ1

)
,

(ℵ2

ℵ2

)
, . . .

represent the same series of cardinals.

Proof. The axiom of monotonicity shows that the first two are the
same, and the axiom of fusion shows that the last two are same.�

Axiom of Choice (AC). Cartesian product of nonempty sets will al-
ways be nonempty, even if the product is of an infinite family of sets.

Proof. GCH implies AC, and we have already proved GCH. �

http://www.ece.rutgers.edu/~knambiar/
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9. CONCLUSION

A new concept that we have introduced in IST is that of a bonded
set containing figments. It is somewhat like the concept of quarks in
particle physics, where we know that they are there, but we cannot get
one of them isolated. Figments can be very helpful in visualizing the
space around us. If we call an infinitesimal with figments in it awhite
hole, we can say that the finite part of our physical space is nothing but
a tightly packed set of white holes. Since every irrational number has
an infinitesimal attached with it, we can claim that every supernatural
number has ablack stretchattached with it and the physical space
beyond the finite part is ablack wholecontaining black stretches in it.

IST visualizes an infinite recursive subset of positive integers as a
number in the interval(0, 1), with a corresponding infinitesimal. This
infinitesimal has in it all the transfinite sets containing the original
recursive set.

http://www.ece.rutgers.edu/~knambiar/
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In measure theory, it has not been possible to date to construct a
nonLebesgue measurable set without invoking the axiom of choice.
IST does not allow figments to be picked up by the axiom of choice
and for that reason, it would not be unreasonable to say that there are
no nonLebesgue measurable sets in IST.

If we ignore figments, we can visualize the interval(0, 1) as a set
with virtual cardinalityℵ0. As a consequence, the Skolem paradox
cannot be a serious problem in IST.

More than anything else, IST tells us to be realistic. It maintains
that there are points we cannot touch, and that there are spaces we
cannot reach.

· · · for a printable version of this paper· · ·
click here
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